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Waveguides with Radial Inhomogeneities
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Abstract —The field equations are solved for an inhomogeneous dielec-

tric cylinder with azimuthaf symmetry. The solutions are shown to satisfy

particular orthogonality relations and allow derivation of simple, generally

valid expressions for dispersion relation, power flow, energy density, and

group delay. A method for numerical solution of the equations, the mod-

ified staircase method, is proposed. It is shown that it leads to expressions

similar to those of the Wentzel-Kramer-Brillouin (WKB) method, but,

unlike the latter, is valid for the lowest order guided modes. The method

has been tested in a computer program.
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I. INTRODUCTION

T HE PRESENT paper presents a theory of wave propa-

gation on an inhomogeneous optical waveguide of

cylindrical symmetry. The discussion is based on a formu-

lation of the field equations as a single, first-order differen-

tial equation in a four-dimensional vector space. Similar

formulations have been used by several authors as a basis

for numerical, field calculations [1], [2]. Vigants and

Schlesinger [3] in a pioneering paper argue for this type of

approach and point out the advantages obtained by treat-

ing the field equations as a set of first-order equations

when use is made of existing mathematical techniques for
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handling sets of equations. Confining their discussion to

higher order modes, these authors derive the characteristic

equation for the wave propagation in a radially inhomoge-

neous cylinder, and solve numerically the HEZI and EH ~,

mode propagation for particular models of index variation.

In the present paper, emphasis is on deriving a number of

analytical results. It is shown that this maybe done without

introduction of approximations, provided that the vector

space is so chosen that the inherent symmetries of Maxwell’s

equations are preserved. It is believed that the method is a

useful alternative to the more commonly used procedure of

transforming the field equations into two coupled second-

order equations. Examples of the applications of the ana-

lytical results in obtaining numerical solutions are given in

the last part of this paper.

It is well known that the Wentzel-Kramer-Brillouin

(WKB) approximation, so widely used for computing the

propagation constants of multimode optical waveguides,

fails for the lowest order modes [4]. Analytical solutions

exist for the case of a step-index guide [5], and approxi-

mate solutions for the case of parabolic index variation [6].

A number of numerical methods for field computations in

the case of an arbitrary index profile have been proposed

and demonstrated [7]. For further references see [3] and [7].

In Sections II and III, a formulation of the field equa-

tions as a first-order vector differential equation is intro-

duced. The components of the four-dimensional vector are

chosen to achieve simplicity of the system matrix. Its

symmetry properties lead to orthogonality relations be-

tween the four independent vector solutions. Physically,

they are shown to express power conservation in the radial

direction. A practical consequence of these relations is a

simplification of the dispersion relation of the guided

modes, shown to take the form of a 2 X 2 determinant with

real elements.

In Section IV, expressions are derived for the power flow

and the group delay of a guided mode. The delay is

expressed in terms of the propagation constant and the

field distribution. The discussion so far is carried out

without introduction of approximations.

Methods for the numerical solution of the differential

equation are discussed in Section V. A power series solu-

tion of the equation is developed and the special properties

of the system matrix are utilized to simplify the recursion

formula for the vector coefficients of the series.

A second method, the modified staircase approximation,

is based on approximating the system matrix by a constant

matrix multiplied by a scalar function. The solution ob-

tained consists of a product of matrix exponential which

are easily reduced analytically to polynomials of degree 1.

This is possible because of the properties of the system

matrix. The solutions have similarities with the ones ob-

tained from the WKB method and may be regarded as

generalizations of the latter. This method has been tested

in a computer program and the main experience with the

program is described in Section VI. The matrix formalism

developed in Sections II and III has been used in another

paper to solve a problem of wave propagation in fibers of

crystalline materials [11 ].

H. REFORMULATION OF THE FIELD EQUATIONS

The electromagnetic field equations for monochromatic

waves of frequency Q/2 m in a source-free region may be

writ ten

vxE+jL+LoH=o (la)

v XII– jwonzl?=o. (lb)

We shall assume the medium to be isotropic and inhomo-

geneous with cylindrical symmetry. The cylindrical coordi-

nates (r, 6, z) that are used are shown in Fig. 1. The index

of refraction n is assumed to be a function of r and of O.

We attempt to find solutions of the form

F(r, d, z) =F(r)eJ(uO–8’)

where

~=(), *l, &2,... (2)

is the azimuthal index and ~ the constant of propagation.

We shall, in the following, assume v >0 except when the

contrary is explicitly stated. Equation (1) is then seen to be

equivalent to four scalar differential equations of first-order

and two algebraic equations. The latter may be written

H,= –(l/rtipO)(PrEO +V~z) (3)

and

E,= (1/rcocOrz2)(flrHd +vHZ). (4)

It is convenient to introduce the normalized radius and the

normalized constant of propagation, given respectively as

s = kOr and b= fl/kO (5)

with

ko= ~ and ZO = (pO/fO)l’2. (6)

We further introduce the vector variable

W(S) = col(sE@Z; l/’2, EZZ~i/z,sH@Z)12, HZ Zj/2).

(7)

The four scalar differential equations contained in (1) may

then be written

d

ZW=MW”
(8)

Here M and L are respectively the 4X 4 and 2 X 2 matrices

given by

( )L=L ‘b ‘2–n2s2.
S ~2—b2 — vb

(9)

The four-dimensional vector equation (8) is, together with

(3) and (4), equivalent to Maxwell’s equations. The vector

w is determined by the field components that are tangential
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Fig. 1. Cylindrical coordinate system,

to a cylinder of radius s. As explained in [3], this choice

allows continuity of W(S) even in points where the refrac-

tive index n(s) is discontinuous. Otherwise, the compo-

nents of w have been chosen to achieve simplicity of the

system matrix M. The constant b will be assumed real and

M is, therefore, pure imaginary.

Equation (8) always has four linearly independent solu-

tions. It is frequently convenient to regard these as the

column vectors of a 4X 4 matrix W(,s ) which then satisfies

(d/ds)W=iWW. (lo)

Any solution of (8) may then be written as

w(s) = W(s)c (11)

where c is a constant vector. Since the column vectors of W

are linearly independent, the matrix is nonsingular and

may be normalized by choice of a multip~cative constant

of integration, so that it equals the unit matrix at an

arbitrary point SO.This form of the solution is denoted by

W(s, so) and is called the matricant, the fundamental

matrix or the transition matrix of the system. Its most

important general properties are expressed by the following

three relations ([8], p. 175):

W(SO, JO)=l (12)

W-’(s, so)=w(so,,s) (13)

and

W(s, s’)w(s’, so) = W(s, so) (14)

wheres’ is arbitrary.

We shall in the following section derive some analytical

relations satisfied by the solutions of (8).

III. GENERAL PROPERTIES OF THE SOLUTIONS

A. The System Matrix

We first note that

~2= –K21 (15)

where

(
, )1/2,~= n2—bz—V2 s2 (16)

Aside from a factor ko, this is the radial wavenumber

component which is taken to be either positive real or

positive imaginary. Thus, the matrix k! is permanently
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degenerate, having the two double eigenvalues + jK and

- jK.

For any value ofs for which K #O, M has a complete set

of eigenvectors. The two

eigenvalue + jK span a

w+(s).

The projector

eigenvectors correspo~ding to

two-dimensional vector space

p. *(jKl+M]

projects any four-dimensional vector into

wise the projector

N. &(jK1-M)

(17)

this space. Like-

(18)

projects into the two-dimensional space ‘V_(s) correspond-

ing to negative eigenvalues. Since P2 = P and N 2 = N,

they are indeed projectors, and in addition NP = PN = O.

The fact that P and N are the eigenprojectors of ill is

evident from

MP= jKP and MN= – jKN. (19)

The values of s for which K = O are called caustics or

turning points. Here, the projectors (17) and (18) become

singular. The system matrix is nonsemisimple at these

points, having only two Iineary independent eigenvectors

corresponding to eigenvalue zero.

In order to expose the symmetry of M we introduce

/oool\

~= 00 –1 o

0 –1 o 0 ‘
(20)

\looo/

Denoting the transpose of M by fi, we find

~&f. = — @* (21)

showing that Nl is u-skew Hermitian ([8], p. 224). We also

note that u 2 = 1 and shall see that u acts as a metric for the

vector solutions.

B. Properties of the Solutions

The symmetry properties of M lead to orthogonality

relations between the vector solutions. One consequence of

these is that a solution regular at s = O transmits no power

in the radial direction. Let w(s) be a vector solution. Then

, ;(fi”uw) = W*J!12*.W+ fi*aMw

and, by invoking (21), we observe that the right-hand side

is zero. Hence

W*U w = const. (22) ‘

In fact, by the same method, any two solutions are seen to

satisfy

ti~u W2= const. (23)

The physical meaning of the conservation theorem (22) is

that power flow in the radial direction is constant, i.e.,

independent ofs. In applying these results to the transition
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matrix, we find, according to (12)

?@% W= const matrix = u. (24)

Thus, W is u-unitary, i.e.,

W’=UW*U. (25)

Two vector solutions of (8) have singularities at s = O.

These are not acceptable as solutions of physical problems

in a source-free region. The other two, say VI(S) and Vz(s )

may be chosen so that

V,(s) s–”+xo V2(S)S–’ + V. (26)

when

S. +().

Here, XOand yO are constant vectors given by (59) and (60).

The vector functions VI(S) and V2(S) may then be seen to

satisfy

fi~uvl = fi~av2 = fi~avz = O. (27)

To see this, observe that according to (22) and (23) each of

the three products above are constant, i.e., independent of

s. On the other hand, they are all zero fors = O according

to (26). Hence, the result (27).

C. Solutions With Real or Pure Imaginary Components

1) Any solution W(S) of the deferential equation (8) may

be written as a sum of two solutions with components that are

either real or pure irnagina~: To see that this is true, let the

components of W(S) be

P,+ ~!?,J i=l,. ..,4 (28)

where p, and q, are real. Then

W=g+h (29)

where

g=col(p}> P2, jq3>~q4 ) h=col(jq, jjq2j P3, P4).

(30)

When inserted into the differential equation (8), (29) gives

( )-&Mg=- $h–iWh . (31)

Inserting further for the system matrix Al from (8) we

observe that (31 ) represents four scalar equations, each

equating a real component on one side to an imaginary

component on the other. This is possible only if all the

components are zero, i.e.,

-&(s) –Mg(s)=o

:h(s)– Mh(s)=O. (32)

The above shows that g(s) and h(s) are themselves solu-

tions and each of them have components that are either

real or imaginary as stated above.

2) The two solutions VI(S) and V2(S) with properties at

s = O as defined by (26) have electric and magnetic compo-

nents that are respectively real and imaginary: Consider first

v I(s ) which, according to assumption, tend to

Xosu

for small values of s. From the series expansion of solu-

tions discussed in Section V, it is seen that all the vector

coefficients are real in their two first components and

imaginary in the two others. Since s is real, the result

follows as stated above. The proof for V2(S) is similar.

Solutions that are regular for s = O and that decrease

exponentially for large values of s are called the guided

modes for the cylinder.

3) A guided mode may always be chosen so that the two

first components are real and the remaining two imaginary:

Any solution w(s), regular at s = O, must be a linear

combination of v,(s) and V2(S)

w(s) =a, v,(s)+ a2v2(s). (33)

The coefficients a, and az must then be chosen so that (33)

has the prescribed exponential decrease for large values of

s. However, this can only be achieved for a discrete set of

values of the propagation constant b. In Section V, a

derivation is given of the dispersion relation that de-

termines these values of b and it is shown that a, and az

may be chosen real. It follows that W(S) has real and

imaginary components as asserted above.

IV. POWER AND ENERGY: THE GROUP DELAY OF A

GUIDED MODE

The power flow and the stored energy are important on

their own account, but are discussed here also because they

allow determination of the group velocity and the group

delay.

A. Power jlow

The total time average power flow in the radial direction

per unit length is given by

pT=?&ow (34)

which, according to (22), is a quantity independent of s. A

is the wavelength in vacuum. The density of power flow in

the azimuthal direction is

l-a

()
So=–qw” UZM w. (35)

In the same way, the axial component of Poynting’s vector

is seen to be

1 a

(1“=@’” ‘%M “
(36)

and the total power flow of the mode in the axial direction

is

pz=&mfi*(++)wds (37)

where s = kOr. When the differentiation in the intergrand

is carried out, (37) takes the form

P,=X “iVAwds
f8~b ~

(38)
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where A is the real, symmetric matrix

/
2b, vO0
v 000 I

(39)

B. The Stored Energy

To find the group velocity of a guided mode when the

axial power flow is known, we need to know the energy

density. In terms of the field vectors, the time average

energy density at an arbitrary point may be written

When n is differentiated with respect to Q, r (nots) should

be kept constant. The term proportional to (an/au) ,then

represents the energy contribution due to the dispersion of

the material. In the same way as before, we substitute E

and H for the state vector w and obtain, after some

manipulations

1~=
( )

—@*u b% W+v&M+@ %-M W.
4jsc ab d~ iln

(41)

The total time average stored energy per unit length of

the cylinder theri is

(42)

or

The first term on the right in (43) may now be eliminated

by means of (37). For the second and third terms, we carry

out the differentiations and define

(la

‘“~” ‘GM–M )

—–~diag(n2– b2, v2+n2s2,1– (b/n) 2,s2+(v/n)2)

(44)

n’ O 0 0

0 n4s2 O 0

00

I

b2 vb “

O 0 vb V2

(45)
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With this, (43) is written

U=!pz+x
c 817c

(f

m

/

co an
G*Ewds — A

)(J a “+*Fwds “
(46)

o

Here, the quantity b/c is the inverse of the phase velocity

vp=~.
b

(47)

The matrices E and F are real and symmetric. They are

also diagonal or near-diagonal, which simplifies the com-

putation of the two integrals.

C. The Group Delay

Let us denote the group velocity by o~. Its inverse is the

group delay

1
‘r G=-.

OG
(48)

Under very general conditions the group velocity is identi-

cal with the energy velocity. We obtain accordingly from

(46)

u
‘rG=—

P,

=+(l+7w+Tm) (49)

where we have

J

~ dn -~

() Xw ‘Wds
Tm=— A ~

J

(50)
W*A wds

o

J

co
+*Ew ds

o
Tw= ~

1

(51)
$*A wds

o

where ~~ is the delay due to material dispersion. Since

dn

‘z ‘1

and

r~ is a small quantity. The delay rW is the delay caused by

waveguide dispersion. For optical waveguides, ~Wwill also

be small. This is seen by considering the numeratorin(51).

It evidently consists of four terms. Two of these are pro-

portional to (b2 – n2 ) which for most waveguides will be a

small number. Moreover, this quantity changes sign in the

region of integration, leading to partial canceling. The two

remaining terms are proportional to IEZ 12 and IHZ [2, re-

spectively, and are small because the axial field compo-

nents of the solutions are known to be small.

The form of the expression (49) where the computed

quantities ~n and Tw appear as Small corrections, allOWS

accurate determination of the delay without excessive re-

quirements for the accuracy of w.
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V. METHODS OF SOLUTION

A. Solution by Power Expansion at the Origin

The system matrix M has a simple pole at s = O. For

small values ofs, ill tends to

where R is the residue matrix

R.

with

(52)

(53)

no=n(0). (54)

The residue matrix has the two double eigenvalues + v of

— v and it is easy to see that

R2=v2~+ (55)

For sufficiently small values of s, the differential equation

(10) approaches the equation

:W=ARW. (56)
s

Since R is a constant matrix, (56) is Euler’s equation with

the solution

w= eRlns (57)

When v >1, this may, through use of (55), be reduced to

The matrix factors on the right-hand side are projectors of

rank 2. It follows that there are two pairs of vector solu-

tions, proportional to sV and s–’, respectively.

The vector space corresponding to s“ is spanned by the

vectors

xo=col(bv/n~, l–b2/n~, – jv, O) (59)

YO=CO1(– v/n~,O! jvb/n; , j(l–b2/n~)). (60)

These are linearly independent eigenvectors of R corre-

sponding to the eigenvalue + v. It is readily seen that they

satisfy

ijuxo = o

Jl;uyo = o

i~uyo = o. (61)

For v = O, (57) reduces to

W=(l+RLzs). (62)

Here, one pair of vector solutions tends to a finite value at

the origin. The other pair has a logarithmic singularity at

S=o.

The former pair is found by putting v = O in (59) and

(60). For any value of v, the solutions have, as one might

expect, the same behavior as the Bessel functions close to

S=o.

Since only the solutions being finite @s= O can be part

of the guided modes, it is computationally advantageous to

work with the vector wave equation (8) rather than the

matrix equation, and we shall develop the solution of the

former in terms of a power series.

1) Power series solution of the vector wave equation:

We attempt to write a solution w of (8) as
m

w(s) = ~ WDS”+J’. (63)
p=()

Here, the Wp’s are vector coefficients to be determined and

V = (),1,2, . . .

is as before the azimuthal wavenumber. By writing W(S) in

this form we have excluded the solutions tending to infinity

at the origin.

We also write the system matrix

M=:R+ ~ ikfqSq.

~=o

(64)

This power expansion of the system matrix may be found

by substitution of the functions n2(s) and l/n2(s) for

their power series in (9).

When the power series for w and ilf are inserted into the

differential equation (8), we obtain by equating terms of

the same power
p–1

(P+v)wp =q=2_, ~qwp-,-l. (65)

Here, we have put

R= M_,. (66)

For p = Owe obtain from (65)

Vwo = Rwo (67)

which shows that W. is an eigenvector corresponding to

eigenvalue + v of the residue matrix R. This means that W.

must be some linear combination of the vectors X. and y.

given by (59) and (60), Hence

Wo=a,.xo+a, yo. (68)

For the guided modes, the ratio al /az is determined by the

boundary condition at infinity. A slight rearranging of

terms in (65) gives

[( P+v)l–~] wp=M’wp_, +M1wp_2+ . . +Mp_lw’.

(69)

With the relation (55) in mind, we readily see that the

matrix on the left may be inverted analytically and obtain

W*= P(P;2V) [( P+v)l+R](Mow&+ ~~~ +MP_,Wo)

(70)

which allows successive computing of all the vector coeffi-

cients starting out with W. as given by (68). No matrix
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inversion is needed in computing the coefficients.

2) The case of constant index n = n ~: When n is a con-

stant, the only nonzero coefficients in the expansion (64)

are R and All. The recursion formula then reduces to

Wp =

~(p\2,) [(~+”)l+Rl~,wp_2” (71)

The series (65) may now be summed analytically to give

the well-known result of Schnitzer [5]. The four linearly

independent solutions of (8

u, =

vb
“—K,

‘Jnzp

j-&KV

vb
— Iv
n2P

p IV.—
nz

are

U* =

o

j$?rv .

– jpIV ,

The argument of the modified Bessel functions is ps

Ku= KD(ps) Iv=lu(ps).

In the above, we have put

(b2-n~)l’’2=p

(72)

(73)

(74)

assuming n z < b. The set of vectors Um form a complete set

of solutions and are related by

ri,*uu3 = z@Tu4 =1. (75a)

For the other products, we have

ti~auq = O. (75b)

The correctness of (75a) follows from a well-known result

for the Wronskian of the modified Bessel functions ([9], p.

375). These orthogonal relations will be seen to be im-

portant in the following for obtaining a simple dispersion

relation for a waveguide with arbitrary radial index varia-

tion.

B. Solution by a Modified Staircase Approximation

The index is assumed to be an arbitrary function ofs in

the region

O<s<a (76)

and a constant, equal to n‘, outside this region. It follows

that for

s>a (77)

the solutions (72) and (73) apply. For very small values of

s, the solution is determined by the first term of the series

(63), but the series will in general converge too slowly to be

of much practical use for computing the solution for larger
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Fig. 2. Approximate discontinuous system functions.
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Vigants and Schlesinger [3] make use of a staircase

approximation in which the continuous function n(s) is

replaced by a piecewise constant function. The efficiency

of the method has been studied in greater detail by Yeh

and Lindgren [2]. A weak point in the method is that use of

the modified Bessel function

KU( S/-)

in expressing the approximate solution introduces a singu-

larity at the value ofs for which

n2(s)=b2. (78)

The exact solution has no such singularity.

In the following, we shall sketch a modified staircase

approximation in which use is made of the fact that the

special properties of ill make the computation of the

matrix exponential particularly easy.

Let tq be the midpoint of the interval s~, s~+,. Within

this interval we approximate the system matrix M(s) by

@Lw(tq).~(s)= ~(tq) (79)

It is seen that the approximate system matrix S in each

interval is equal to a constant matrix times a scalar func-

tion. This scalar function is chosen so that S(s) has the

correct eigenvalues everywhere in the interval, whereas the

eigenvectors (or eigenprojectors) are correct in the mid-

point of each interval only (Fig. 2).

Introducing

D(s)= ikf(s )-s(s) (80)

we may write the differential equation (10) as

:W–S(S)W=D(S)W. (81)

The term on the right-hand side is zero at the midpoint tq

of each interval. Its matrix norm is then small over the

entire interval, provided that the latter is chosen to be

sufficiently narrow.

The homogeneous equation corresponding to (81) is

+Wo–s(s)wo=o. (82)
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The resulting transition matrix WO, evidently a first ap-

proximationto W,isseen to be

[
WO(s, &)=exp i14(tq)~s(K(S)/K( lq))dS 1 (83)

where sand $belong to the interval.

When use is made of the projectors defined in (17) and

(18)

P= P(tq)

iv= N(tq) (84)

we may write

@~)=j@,)(~-N). (85)

We make use of the relations

(P- fv)p=P+(-l)’fv (86)

and

l=P+N (87)

and obtain from the Taylor expansion of (83)

()
WO(S, f) = ~(t~)exp jfKd3 + fV(t~)exp (-j&d.).

(88)

This expression is evidently quite similar to the one that

results from applying the WKB approximation to the

scalar wave equation [4]. An important difference is that

here the polarizations of the two waves appear directly in

the expression.

Let us introduce

+(s, ~) +K(S)I ds. (89)

For the region in which K(s) is real, (88) may then be

written

Wo(s, $) =lcos@(s, f)+ ‘iW(t~)sinO(s, &).
l+q)l

(90)

For the region in which K is imaginary, we find similarly

~o(S, &) =Icosh$(s, f)+ --!----kf(t,) sinh@(s, g).
kk?)l

(91)

Putting now

s=s~+land(=s~

the first approximation of the transition matrix from s~ to

s~+k is

JKo(sq+ 1 J Sq )

as given by (90) and (91) for real and imaginary K ‘s,

respectively.

1) Improvement of the Accuracy: Returning now to the

exact equation (81), we may improve the accuracy by

making use of a perturbation type of solution. Using a

well-known result ([8], p. 187) we obtain

W(S, ~) = WO(S, &)+~SWo(S, S’)D(S’)W(S’, f)ds’.
L

(92)

This is an integral equation for IV(S, $). Since D(s’) is

small everywhere in the interval and zero at the midpoint, a

correction term is obtained by replacing W under the

integral sign by Wo. A three point Simpson method for

evaluation of the integral then gives

w= Wo+ ‘q+;-sq [woD(sq)+D(sq+, )FPo] (93)

where we have put

The transition

now found by

wo(sq+,, ~q) = Wo

J’Jlsq+ I ~Sq )=W. (94)

matrix over a distance of several intervals is

means of the product- rule shown in (14).

C. Dispersion Relation for the Guided Modes

Assume that we by some approximate method have

found two vector solutions VI(S) and V2(S) for the region
()< s <a. The two functions are well behaved at s = (). In

the region s a a, both solutions may, as we have seen, be

expressed in terms of the vector functions (72) and (73).

We require that some linear combination of VI(S ) and OJS )

w(s) =a, vi(s)+ a202(s) (95)

tend to zero at s a cc. This means that W(a) has zero

projection into the vector space spanned by us and U4 in

(73). When use is made of the orthogonality relations (75),

this condition leads to

alti~(a)uo, (a)+ azti~(a)uuz(a)=O

alzl~(a)uvl(a) +a2tij(a)uoz(a)=0 (96)

or

ii~(a)uol(a), ti~(a)uvz(a) DO
(97)

ii; (a)uol(a), ti~(a)uvz(a) “

This is the dispersion relation which determines the

normalized constant of propagation b, Although different

in form, the relation is equivalent to the characteristic

equation derived by Vigant and Schlesinger [3]. For the

special case of n(s) = const, (97) reduces to the well-known

dispersion relation for a step-index guide ([ 10], p. 296). The

determinant (97) has real terms only. This follows from the

fact that in o,(a) and oz(a) the electric and magnetic

components are respectively real and imaginary. The con-

stant b must be found through numerical search for the

value that satisfies (97).

VI. EXPERIENCE WITH THE COMPUTER PROGRAM

A computer program was made based on the modified

staircase method, described in Section V-B. The program

computes propagation constant and field distribution for

guided modes of a cylinder with arbitrary radial index
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variation. First two vector solutions are computed starting

respectively with [1]

xOsvand yes”

for a small value ofs, e.g., s = 10-6. Here, XO and yO are the [2]

vectors given by (59) and (60). Then successive values of

the solutions are computed in steps by means of the [3]

expression (94). It was found advantageous to use the

correction term (93) because this allowed the use of larger [4]
steps without serious reduction in accuracy. The program

was tested by computing fields and propagation constant

for the HE, ~mode of a step-index fiber. Since the solutions
[5]

for this case are well known, the accuracy could be tested. [6]

With steps of s equal to 1, i.e., about 6 steps per wave-

length, the relative error in the fields per step was smaller [7]
than 10’6 over most of the region. As a further check, the

cutoff value of ( ps ) for the HOI mode was computed. The [8]
correct value is known to be the first zero of JO(z). The

error in the computed result was 1.2.10 – 5. [9]

If the expression for the transition matrix is expanded in ~lol

terms of the length of the interval (s~+, – s~), the first

errors occur in the fourth-order term. Also, W, as given by [11]

(93), is u-unitary up to terms of order 4, i.e.,

uFP*uW-1 = const(.s~+l – s~)4.

This makes the numerical method developed here to some

extent self-controlling. Whenever the correction term de-

stroys the unitary property of the transition matrix, the

errors are significant. The easiest way of obtaining this

control is to check that the two vector’ solutions satisfy the

orthogonality relations (27).

The program was developed in the APL language on an

IBM 5100 desk top computer. The storage capacity needed

by the total program was approximately 16 kbytes.
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