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Abstract —The field equations are solved for an inhomogeneous dielec-
tric cylinder with azimuthal symmetry. The solutions are shown to satisfy
particular orthogonality relations and allow derivation of simple, generally
valid expressions for dispersion relation, power flow, energy density, and
group delay. A method for numerical solution of the equations, the mod-
ified staircase method, is proposed. It is shown that it leads to expressions
similar to those of .the Wentzel-Kramer-Brillouin (WKB) method, but,
unlike the latter, is valid for the lowest order guided modes. The method
has been tested in a computer program.
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I. INTRODUCTION

HE PRESENT paper presents a theory of wave propa-

gation on an inhomogeneous optical waveguide of
cylindrical symmetry. The discussion is based on a formu-
lation of the field equations as a single, first-order differen-
tial equation in a four-dimensional vector space. Similar
formulations have been used by several authors as a basis
for numerical field  calculations [1], [2]. Vigants and
Schlesinger [3] in a pioneering paper argue for this type of
approach and point out the advantages obtained by treat-
ing the field equations as a set of first-order equations
when use is made of existing mathematical techniques for
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handling sets of equations. Confining their discussion to
higher order modes, these authors derive the characteristic
equation for the wave propagation in a radially inhomoge-
neous cylinder, and solve numerically the HE,, and EH,,
mode propagation for particular models of index variation.
In the present paper, emphasis is on deriving a number of
analytical results. It is shown that this may be done without
introduction of approximations, provided that the vector
space is so chosen that the inherent symmetries of Maxwell’s
equations are preserved. It is believed that the method is a
useful alternative to the more commonly used procedure of
transforming the field equations into two coupled second-
order equations. Examples of the applications of the ana-
lytical results in obtaining numerical solutions are given in
the last part of this paper.

It is well known that the Wentzel-Kramer-Brillouin
(WKB) approximation, so widely used for computing the
propagation constants of multimode optical waveguides,
fails for the lowest order modes [4]. Analytical solutions
exist for the case of a step-index guide [5], and approxi-
mate solutions for the case of parabolic index variation [6].
A number of numerical methods for field computations in
the case of an arbitrary index profile have been proposed
and demonstrated [7]. For further references see [3] and [7].

In Sections II and III, a formulation of the field equa-
tions as a first-order vector differential equation is intro-
duced. The components of the four-dimensional vector are
chosen to achieve simplicity of the system matrix. Its
symmetry properties lead to orthogonality relations be-
tween the four independent vector solutions. Physically,
they are shown to express power conservation in the radial
direction. A practical consequence of these relations is a
simplification of the dispersion relation of the guided
modes, shown to take the form of a 2 X2 determinant with
real elements.

In Section IV, expressions are derived for the power flow
and the group delay of a guided mode. The delay is
expressed in terms of the propagation constant and the
field distribution. The discussion so far is carried out
without introduction of approximations.

Methods for the numerical solution of the differential
equation are discussed in Section V. A power series solu-
tion of the equation is developed and the special properties
of the system matrix are utilized to simplify the recursion
formula for the vector coefficients of the series.

A second method, the modified staircase approximation,
is based on approximating the system matrix by a constant
matrix multiplied by a scalar function. The solution ob-
tained consists of a product of matrix exponentials which
are easily reduced analytically to polynomials of degree 1.
This is possible because of the properties of the system
matrix. The solutions have similarities with the ones ob-
tained from the WKB method and may be regarded as
generalizations of the latter. This method has been tested
in a computer program and the main experience with the
program is described in Section VI. The matrix formalism
developed in Sections IT and IIT has been used in another
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paper to solve a problem of wave propagation in fibers of
crystalline materials [11].
II. REFORMULATION OF THE FIELD EQUATIONS

The electromagnetic field equations for monochromatic
waves of frequency w/27 in a source-free region may be
written

V XE+ jou,H=0
Vv X H— jwe,n’E=0.

(1a)
(1b)
We shall assume the medium to be isotropic and inhomo-
geneous with cylindrical symmetry. The cylindrical coordi-
nates (r, 8, z) that are used are shown in Fig. 1. The index
of refraction n is assumed to be a function of r and of w.
We attempt to find solutions of the form
F(r,0,z)=F(r)e/*? 5

where
p=0,+1,%2,- ()
is the azimuthal index and B the constant of propagation.
We shall, in the following, assume »= 0 except when the
contrary is explicitly stated. Equation (1) is then seen to be
equivalent to four scalar differential equations of first-order
and two algebraic equations. The latter may be written
Hr: “‘(1/"(0,!1/0)(BI'E9+VEZ) (3)

and

E,=(1/rweyn®)(BrH, +vH,). (4)

It is convenient to introduce the normalized radius and the
normalized constant of propagation, given respectively as

s=kor and b=B/k, (5)
with

w 1/2
ko==~ and Zy= (1o /€5)"" (6)

We further introduce the vector variable
w(s)= col(sE,Zy /2, E, Zy V/?, sHyZ/?, H,Z}/?).
(7)

The four scalar differential equations contained in (1) may
then be written

%w:Mw. (8)

Here M and L are respectively the 4 X4 and 2 X2 matrices
given by

0 i— L
M= an
~JL 0
1 vh VZ_nZSZ)
L=— . 9
S\n?—p? — b ©)

The four-dimensional vector equation (8) is, together with
(3) and (4), equivalent to Maxwell’s equations. The vector
w is determined by the field components that are tangential
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Cylindrical coordinate system.
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y

Fig. 1.
to a cylinder of radius s. As explained in [3], this choice
allows continuity of w(s) even in points where the refrac-
tive index n(s) is discontinuous. Otherwise, the compo-
nents of w have been chosen to achieve simplicity of the
system matrix M. The constant b will be assumed real and
M is, therefore, pure imaginary.

Equation (8) always has four linearly independent solu-
tions. It is frequently convenient to regard these as the
column vectors of a 4X4 matrix W(s) which then satisfies

- (d/ds)W=MW. (10)
Any solution of (8) may then be written as
w(s)=W(s)e (11)

where ¢ is a constant vector. Since the column vectors of W
are linearly independent, the matrix is nonsingular and
may be normalized by choice of a multiplicative constant
of integration, so that it equals the unit matrix at an
arbitrary point s,. This form of the solution is denoted by
Wi(s,s,) and is called the matricant, the fundamental
matrix or the transition matrix of the system. Its most
important general properties are expressed by the following
three relations ([8], p. 175):

W(So,so)zl
W (s, 50) =W(sg,5)

(12)
(13)
and

W(s,sYW(s',sy)=W(s,s4)

where s’ is arbitrary.
We shall in the following section derive some analytical
relations satisfied by the solutions of (8).

(14)

IIl. GENERAL PROPERTIES OF THE SOLUTIONS

A. The System Matrix
We first note that

M?= — 1 (15)

where
k= (n?—b2—»p2/s2)'/?, (16)

Aside from a factor k,, this is the radial wavenumber
component which is taken to be either positive real or
positive imaginary. Thus, the matrix M is permanently
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degenerate, having the two double eigenvalues + jk and
- Jk.

For any value of s for which k 7 0, M has a complete set
of eigenvectors. The two eigenvectors corresponding to
eigenvalue + jk span a two-dimensional vector space
Vo (5).

The projector

1 .

P—z—ﬂc(ﬂd"'M) (17)

projects any four-dimensional vector into this space. Like-
wise the projector

1 .
projects into the two-dimensional space “V_(s) correspond-
ing to negative eigenvalues. Since P2=P and N*=N,
they are indeed projectors, and in addition NP = PN =0.
The fact that P and N are the eigenprojectors of M is
evident from

MP= jxP and MN= — jkN. (19)

The values of s for which k=0 are called caustics or
turning points. Here, the projectors (17) and (18) become
singular. The system matrix is nonsemisimple at these
points, having only two lineary independent eigenvectors
corresponding to eigenvalue zero.

In order to expose the symmetry of M we introduce

0 0 0 1
_ 10 0 -1 0
=10 -1 o ol (20)

1 0 0 0
Denoting the transpose of M by M, we find

oMo = — M* (21)
showing that M is o-skew Hermitian ([8], p. 224). We also

note that 6> =1 and shall see that o acts as a metric for the
vector solutions.

B. Properties of the Solutions

The symmetry properties of M lead to orthogonality
relations between the vector solutions. One consequence of
these is that a solution regular at s = 0 transmits no power
in the radial direction. Let w(s) be a vector solution. Then

%(W*aw) = w*M*ow + w*oMw

and, by invoking (21), we observe that the right-hand side
is zero. Hence

(22)

In fact, by the same method, any two solutions are seen to
satisfy

w¥ow = const.

Wwiow, = const.

(23)
The physical meaning of the conservation theorem (22) is
that power flow in the radial direction is constant, i.e.,
independent of 5. In applying these results to the transition
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matrix, we find, according to (12)

W*eW = const matrix = o. (24)
Thus, W is o-unitary, i.e.,
Wl =gW*o. (25)

Two vector solutions of (8) have singularities at s =0.
These are not acceptable as solutions of physical problems
in a source-free region. The other two, say »,(s) and »,(s)
may be chosen so that

n(s)s™ = xg  wms)sT -w (26)

when
s—0,

Here, x,, and y, are constant vectors given by (59) and (60).
The vector functions »,(s) and »,(s) may then be seen to
satisfy

Prov, = Pfev, = pfov, = 0. (27)

To see this, observe that according to (22) and (23) each of
the three products above are constant, i.e., independent of
s. On the other hand, they are all zero for s = 0 according
to (26). Hence, the result (27).

C. Solutions With Real or Pure Imaginary Components

1) Any solution w(s) of the differential equation (8) may
be written as a sum of two solutions with components that are
either real or pure imaginary: To see that this is true, let the
components of w(s) be

p,t Jjq,, i=1,---,4 (28)

where p, and ¢, are real. Then

w=g+h (29)

where

g=col(p, py, jas, jas)  h=col(jq,, jgs, P3, Ps)-

(30)

When inserted into the differential equation (8), (29) gives

f_i_g*Mg:—(—fi—h—Mh). (31)

ds
Inserting further for the system matrix M from (8) we
observe that (31) represents four scalar equations, each
equating a real component on one side to an imaginary
component on the other. This is possible only if all the
components are ze€ro, i.e.,

2 _&(s)—Mg(s)=0

%h(s)—m(s) = 0. (32)
The above shows that g(s) and A(s) are themselves solu-
tions and each of them have components that are either
real or imaginary as stated above.

2} The two solutions v(s) and v,(s) with properties at
s =10 as defined by (26) have electric and magnetic compo-
nents that are respectively real and imaginary: Consider first
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v,(s) which, according to assumption, tend to
x,s8”

for small values of s. From the series expansion of solu-
tions discussed in Section V, it is seen that all the vector
coefficients are real in their two first components and
imaginary in the two others. Since s is real, the result
follows as stated above. The proof for »,(s) is similar.

Solutions that are regular for s =0 and that decrease
exponentially for large values of s are called the guided
modes for the cylinder.

3) A guided mode may always be chosen so that the two
first components are real and the remaining two imaginary:
Any solution w(s), regular at s=0, must be a linear
combination of »,(s) and »,(s)

w(s)=aw(s)+ aypy(s). (33)
The coefficients «; and a, must then be chosen so that (33)
has the prescribed exponential decrease for large values of
s. However, this can only be achieved for a discrete set of
values of the propagation constant ». In Section V, a
derivation is given of the dispersion relation that de-
termines these values of b and it is shown that &, and «,
may be chosen real. It follows that w(s) has real and
imaginary components as asserted above.

IV. POWER AND ENERGY: THE GROUP DELAY OF A
GUIDED MODE

The power flow and the stored energy are important on
their own account, but are discussed here also because they
aliow determination of the group velocity and the group
delay.

A. Power flow

The total time average power flow in the radial direction
per unit length is given by

Py =Y iaw (34)

which, according to (22), is a quantity independent of s. A
is the wavelength in vacuum. The density of power flow in
the azimuthal direction is
§=—Lie(om) )
A Py wH o, w.
In the same way, the axial component of Poynting’s vector
is seen to be
S“L"“( iM) s (36)
2 4s " %% "
and the total power flow of the mode in the axial direction
is
p = N (D
Z~8—7Uf0 W (aa—bM)wds
where s = kr. When the differentiation in the intergrand
is carried out, (37) takes the form

(37)

_N e
P.= 87be0 W* dwds (38)
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where 4 is the real, symmetric matrix

2b v 0 0
v 0 0 0
b 2b v
==({0 0 — =
a=? = = (39)
‘ v
0 0 — 0
n?

B. The Stored Energy

To find the group velocity of a guided mode when the
axial power flow is known, we need to know the energy
density. In terms of the field vectors, the time average
energy density at an arbitrary point may be written

1 1 0
u= ZH0|H|2 + Z‘o%(”zw)|Elz~

(40)
When n is differentiated with respect to w, r (not s) should
be kept constant. The term proportional to (9n /dw) then
represents the energy contribution due to the dispersion of
the material. In the same way as before, we substitute E
and H for the state vector w and obtain, after some
manipulations

1 d d d
_4jsc (b M+v— M+}\d}\8M M)w.

(41)
The total time average stored energy per unit length of
the cylinder then is

ab v

2
U= 2ﬂ/wurdr = }\—foous ds (42)
0 0

2ar

or

.S o d
—8ch[bf0 W (o%M)wds

+/wﬁ)*o(vaiM—M)wds

+>\f —w*(o— )wds].

(43)

The first term on the right in (43) may now be eliminated

by means of (37). For the second and third terms, we carry
out the differentiations and define

EZLG(V—Q'M—M)
J v

= —sl— diag(n? — b2, v +ns2,1 —(b/n)*, s> +(v/n)’)
(44)

n
4.2
Fz—lo—a—M:i 0 n’ 0 0
J on sn* ] 0 0 br b
0 0 b p?
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With this, (43) is written
}\2

v=bpa X
c 87e

(fo w*Ewds—}\f e *Fwds). (46)

Here, the quantity b/c is the inverse of the phase velocity

0 =<, (47)

? b
The matrices E and F are real and symmetric. They are

also diagonal or near-diagonal, which simplifies the com-
putation of the two integrals.

C. The Group Delay
Let us denote the group velocity by v,;. Its inverse is the
group delay
6= —. (48)

Under very general conditions the group velocity is identi-
cal with the energy velocity. We obtain accordingly from
(46)

U
’TG - F
=Ltr41,) (49)
Y
where we have
f j’;\ w*Fwds
T, = —A o (50)
f w*Awds
0
and
/w *Ewds
1-w = 000 ’ (51)
f w*Awds
0

where 7, is the delay due to material dispersion. Since

dn

}\dk

<1

7, is a small quantity. The delay 7,, is the delay caused by
waveguide dispersion. For optical waveguides, 7, will also
be small. This is seen by considering the numerator in (51).
It evidently consists of four terms. Two of these are pro-
portional to (b* — n*) which for most waveguides will be a
small number. Moreover, this quantity changes sign in the
region of integration, leading to partial canceling. The two
remaining terms are proportional to |E,|? and |H,|% re-
spectively, and are small because the axial field compo-
nents of the solutions are known to be small.

The form of the expression (49) where the computed
quantities 7, and 7, appear as small corrections, allows
accurate determination of the delay without excessive re-
quirements for the accuracy of w.
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V. METHODS OF SOLUTION

A. Solution by Power Expansion at the Origin
The systermn matrix M has a simple pole at s =0. For
small values of s, M tends to

M—»lR
s

(52)

where R is the residue matrix

1
0 J—L 2
R= ng ’ and L,= ,Vb 5 v )
) ng—»b* —vwb
—JLy 0
(53)
with
ny = n(0). (54)

The residue matrix has the two double eigenvalues + » of
— v and it is easy to see that

R*=»71. (55)
For sufficiently small values of s, the differential equation
(10) approaches the equation

d_ 1
SW="_RW. (56)

Since R is a constant matrix, (56) is Euler’s equation with
the solution

W =eRins, (57)
When »>1, this may, through use of (55), be reduced to
1 1 , 1 1 —,
W—§(1+;R)S +§(1 VR)S . (58)

The matrix factors on the right-hand side are projectors of
rank 2. It follows that there are two pairs of vector solu-
tions, proportional to s” and 577, respectively.

The vector space corresponding to s” is spanned by the
vectors

xo=col(bv/n2,1—b*/n3, — j»,0) (59)
yo=col(—»/n2,0, jyb/n}, j(1—b*/n})). (60)
These are linearly independent eigenvectors of R corre-

sponding to the eigenvalue + ». It is readily seen that they
satisfy

Xfox, =0
Vgoy =0
Fkay, = 0. (61)
For » =0, (57) reduces to
W= (1+ Rins). (62)

Here, one pair of vector solutions tends to a finite value at
the origin. The other pair has a logarithmic singularity at
s=0.

The former pair is found by putting » =0 in (59) and
(60). For any value of », the solutions have, as one might
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expect, the same behavior as the Bessel functions close to
s =0.

Since only the solutions being finite at s = 0 can be part
of the guided modes, it is computationally advantageous to
work with the vector wave equation (8) rather than the
matrix equation, and we shall develop the solution of the
former in terms of a power series.

1) Power series solution of the vector wave equation:

We attempt to write a solution w of (8) as

0
wis)= X w7

p=0

(63)

Here, the wp’s are vector coefficients to be determined and
y= 0’ 1’ 2, PR

is as before the azimuthal wavenumber. By writing w(s) in
this form we have excluded the solutions tending to infinity
at the origin.

We also write the system matrix

1 ee)
M=_R+ EOquq.
4=

(64)

This power expansion of the system matrix may be found
by substitution of the functions n’(s) and 1/n%(s) for
their power series in (9).

When the power series for w and M are inserted into the
differential equation (8), we obtain by equating terms of
the same power

p—1
(p—f—v)wp: > Mw, . . (65)
g=—1
Here, we have put
R=M_,. (66)
For p =0 we obtain from (65)
rw, = Rw, (67)

which shows that w;, is an eigenvector cotresponding to
eigenvalue + v of the residue matrix R. This means that w,
must be some linear combination of the vectors x, and y,

given by (59) and (60). Hence
Wy = ayxg T ay .

(68)

For the guided modes, the ratio «; /«a, is determined by the

boundary condition at infinity. A slight rearranging of
terms in (65) gives

[((p+v)1—Rlw,=Mw, ,+Mpm, ,+ - +M,_ .

(69)

With the relation (55) in mind, we readily see that the

matrix on the left may be inverted analytically and obtain

1

W, = —p(p+2v) [(p +v)1+R](Mpr,1 +o M)

(70)

which allows successive computing of all the vector coeffi-

cients starting out with w, as given by (68). No matrix
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inversion is needed in computing the coefficients.

2) The case of constant index n=n,: When n is a con-
stant, the only nonzero coefficients in the expansion (64)
are R and M,. The recursion formula then reduces to

_ 1
T p(p+2r) )
The series (65) may now be summed analytically to give

the well-known result of Schnitzer [S]. The four linearly
independent solutions of (8) are

[((p+v)1+RIMw,_,.

. vb A
BN JSK,
p2 0
w=| ik =2, | (@
p v
—n,skK,
’ —pK,
0
nv_bp , —sl,
zp 0
u; = B ;; v U= j-VBI (73)
o P’
Jnasty — Jel,
0
The argument of the modified Bessel functions is ps
K,=K,(ps) I,=1(ps).

In the above, we have put
1/2
(B2=n3)"=p (74)

assuming n, < b. The set of vectors u,, form a complete set
of solutions and are related by

i*ou, = iiou, =1. (75a)
For the other products, we have
iyou,=0. (75b)

The correctness of (75a) follows from a well-known result
for the Wronskian of the modified Bessel functions ([9], p.
375). These orthogonal relations will be seen to be im-
portant in the following for obtaining a simple dispersion
relation for a waveguide with arbitrary radial index varia-
tion.

B. Solution by a Modified Staircase Approximation

The index is assumed to be an arbitrary function of s in
the region

O0<s<s<a

(76)
and a constant, equal to n,, outside this region. It follows
that for

(77)

the solutions (72) and (73) apply. For very small values of
s, the solution is determined by the first term of the series
(63), but the series will in general converge too slowly to be
of much practical use for computing the solution for larger

s=dad
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Fig. 2. Approximate discontinuous system functions.

values of s.

Vigants and Schiesinger [3] make use of a staircase
approximation in which the continuous function n(s) is
replaced by a piecewise constant function. The efficiency
of the method has been studied in greater detail by Yeh
and Lindgren [2]. A weak point in the method is that use of
the modified Bessel function

K, (=)

in expressing the approximate solution introduces a singu-
larity at the value of s for which

n*(s) =5

The exact solution has no such singularity.

In the following, we shall sketch a modified staircase
approximation in which use is made of the fact that the
special properties of M make the computation of the
matrix exponential particularly easy.

Let 7, be the midpoint of the interval 5., s,,,. Within
this interval we approximate the system matrix M(s) by

(79)

(78)

s(s) =D a(r).
n(tq)

It is seen that the approximate system matrix § in each
interval is equal to a constant matrix times a scalar func-
tion. This scalar function is chosen so that S(s) has the
correct eigenvalues everywhere in the interval, whereas the
eigenvectors (or eigenprojectors) are correct in the mid-
point of each interval only (Fig. 2).

Introducing
D(s)=M(s)—S(s) (80)
we may write the differential equation (10) as
L S(s)W=D(s)W. (81)

ds

The term on the right-hand side is zero at the midpoint 7,
of each interval. Its matrix norm is then small over the
entire interval, provided that the latter is chosen to be
sufficiently narrow.

The homogeneous equation corresponding to (81) is

Ly — S(s)W,=0.

p (82)
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The resulting transition matrix W, evidently a first ap-
proximation to W, is seen to be

Wos, 5)—exp[ M(: )f (x(s)/x(1,)) ds ] (83)

where s and £ belong to the interval.
When use is made of the projectors defined in (17) and

(18)

P=P(1,)
N=N(t,) (84)
we may write
M(t,) = ju(1,)(P—N). (85)
We make use of the relations
(P—N)Y' =P+(—1°N (86)
and
1=P+N (87)

and obtain from the Taylor expansion of (83)
Wo(s, &)= P(z, exp(]fxds)—f-N exp( ]/de)
(88)

This expression is evidently quite similar to the one that
results from applying the WKB approximation to the
scalar wave equation [4]. An important difference is that
here the polarizations of the two waves appear directly in
the expression.

Let us introduce

o(s,¢) = fjx(sn ds. (89)

For the region in which x(s) is real, (88) may then be
written

Wols, &) =1cosd(s, &)+ ———~

|(f) M(t )sinq&(s,&).

(90)

For the region in which « is imaginary, we find similarly
1 .
Wy(s, &)= ~——M(r,)sinh¢(s. £).
|(z,)]

(91)

1cosh¢(s, &)+

Putting now
s=s,and§=s,

the first approximation of the transition matrix from s, to
Sg41 18

I’Vo(sq+175q)

as given by (90) and (91) for real and imaginary «’s,
respectively.

1) Improvement of the Accuracy: Returning now to the
exact equation (81), we may improve the accuracy by
making use of a perturbation type of solution. Using a
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well-known result ([8], p. 187) we obtain

W(s, ) =W,(s, &)+ fS "Wils. s \D(sYW(s', £) ds".

(92)

. This is an integral equation for W(s, §). Since D(s’) is

small everywhere in the interval and zero at the midpoint, a
correction term is obtained by replacing W under the
integral sign by W,. A three point Simpson method for
evaluation of the integral then gives

s —s
q+1 q
W W, +1—1

e [WoD(s,)+D(s, . )W,| (93)

where we have put
Wolsgi1,8,) =W,

W(s,1,8,)=W. (94)

The transition matrix over a distance of several intervals is
now found by means of the product rule shown in (14).

C. Dispersion Relation for the Guided Modes

Assume that we by some approximate method have
found two vector solutions v,(s) and v,(s) for the region
0 <s=<aqa. The two functions are well behaved at s = 0. In
the region s> a, both solutions may, as we have seen, be
expressed in terms of the vector functions (72) and (73).
We require that some linear combination of v,(s) and v,(s)

(95)
tend to zero at s —oo. This means that w(a) has zero
projection into the vector space spanned by #, and u, in
(73). When use is made of the orthogonality relations (75),
this condition leads to

w(s)=av(s)+ azvz(s)

ai@t(a)ov(a)+ a,id%(a)ovy(a) =0

wis(a)ovy(a)+ wii(a)ar(a) =0 (96)
or )

at(a)on(a),  dr(a)ovy(a)|

as(@ov(a),  @x(@an(a)| D

This is the dispersion relation which determines the
normalized constant of propagation 5. Although different
in form, the relation is equivalent to the characteristic
equation derived by Vigant and Schlesinger [3]. For the
special case of n(s) = const, (97) reduces to the well-known
dispersion relation for a step-index guide ([10], p. 296). The
determinant (97) has real terms only. This follows from the
fact that in v,(a) and v,(a) the eclectric and magnetic
components are respectively real and imaginary. The con-
stant b must be found through numerical search for the
value that satisfies (97).

VI. EXPERIENCE WITH THE COMPUTER PROGRAM

A computer program was made based on the modified
staircase method, described in Section V-B. The program
computes propagation constant and field distribution for
guided modes of a cylinder with arbitrary radial index
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- variation. First two vector solutions are computed starting
respectively with

xgs”and y,s”

for a small value of s, e.g., s =107°. Here, x, and y, are the
vectors given by (59) and (60). Then successive values of
the. solutions are computed in steps by means of the
expression (94). It was found advantageous to use the
correction term (93) because this allowed the use of larger
steps without serious reduction in accuracy. The program
was tested by computing fields and propagation constant
for the HE |, mode of a step-index fiber. Since the solutions
for this case are well known, the accuracy could be tested.
With steps of s equal to I, ie., about 6 steps per wave-
- length, the relative error in the fields per step was smaller
than 107 over most of the region. As a further check, the
cutoff value of (ps) for the Hy, mode was computed. The
correct value is known to be the first zero of Jy(z). The
error in the computed result was 1.2-1077,

If the expression for the transition matrix is expanded in
terms of the length of the interval (s,.,—s,), the first
errors occur in the fourth-order term. Also, W, as given by
(93), is o-unitary up to terms of order 4, i.e.,

oW*aW —1=const (s, — sq)4.

This makes the numerical method developed here to some
extent self-controlling. Whenever the correction term de-
stroys the unitary property of the transition matrix, the
errors are significant. The easiest way of obtaining this
control is to check that the two vector solutions satisfy the
orthogonality relations (27).

The program was developed in the APL language on an
IBM 5100 desk top computer. The storage capacity needed
by the total program was approximately 16 kbytes.
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